Constructing the Tangent and Cotangent Space

This one confused me for a long time, so I figured I should write this down before I forgot again. Let $latex {M}&fg=000000$ be an abstract smooth manifold. We want to define the notion of a tangent vector to $latex {M}&fg=000000$ at a point $latex {p \in M}&fg=000000$. With that, we can define the tangent… Continue reading Constructing the Tangent and Cotangent Space

Some Notes on Valuations

There are some notes on valuations from the first lecture of Math 223a at Harvard. 1. Valuations Let $latex {k}&fg=000000$ be a field. Definition 1 A valuation $latex \displaystyle \left\lvert - \right\rvert : k \rightarrow \mathbb R_{\ge 0} &fg=000000$ is a function obeying the axioms $latex {\left\lvert \alpha \right\rvert = 0 \iff \alpha = 0}&fg=000000$.… Continue reading Some Notes on Valuations

The Mixtilinear Incircle

This blog post corresponds to my newest olympiad handout on mixtilinear incircles. My favorite circle associated to a triangle is the $latex {A}&fg=000000$-mixtilinear incircle. While it rarely shows up on olympiads, it is one of the richest configurations I have seen, with many unexpected coincidences showing up, and I would be overjoyed if they become… Continue reading The Mixtilinear Incircle

Linnik’s Theorem for Sato-Tate Laws on CM Elliptic Curves

\title{A Variant of Linnik for Elliptic Curves} \maketitle Here I talk about my first project at the Emory REU. Prerequisites for this post: some familiarity with number fields. 1. Motivation: Arithemtic Progressions Given a property $latex {P}&fg=000000$ about primes, there's two questions we can ask: How many primes $latex {\le x}&fg=000000$ are there with this… Continue reading Linnik’s Theorem for Sato-Tate Laws on CM Elliptic Curves

Proof of Dirichlet’s Theorem on Arithmetic Progressions

In this post I will sketch a proof Dirichlet Theorem's in the following form: Theorem 1 (Dirichlet's Theorem on Arithmetic Progression) Let $latex \displaystyle \psi(x;q,a) = \sum_{\substack{n \le x \\ n \equiv a \mod q}} \Lambda(n). &fg=000000$ Let $latex {N}&fg=000000$ be a positive constant. Then for some constant $latex {C(N) > 0}&fg=000000$ depending on $latex… Continue reading Proof of Dirichlet’s Theorem on Arithmetic Progressions

Zeros and Primes

Prerequisites for this post: previous post, and complex analysis. For this entire post, $latex {s}&fg=000000$ is a complex variable with $latex {s = \sigma + it}&fg=000000$. 1. The $latex {\Gamma}&fg=000000$ function So there's this thing called the Gamma function. Denoted $latex {\Gamma(s)}&fg=000000$, it is defined by $latex \displaystyle \Gamma(s) = \int_0^{\infty} x^{s-1} e^{-x} \; dx… Continue reading Zeros and Primes

von Mangoldt and Zeta

Prerequisites for this post: definition of Dirichlet convolution, and big $latex {O}&fg=000000$-notation. Normally I don't like to blog about something until I'm pretty confident that I have a reasonably good understanding of what's happening, but I desperately need to sort out my thoughts, so here I go\dots 1. Primes One day, an alien explorer lands… Continue reading von Mangoldt and Zeta