A story of block-ascending permutations

I recently had a combinatorics paper appear in the EJC. In this post I want to brag a bit by telling the ``story'' of this paper: what motivated it, how I found the conjecture that I originally did, and the process that eventually led me to the proof, and so on. This work was part… Continue reading A story of block-ascending permutations

Joyal’s Proof of Cayley’s Tree Formula

I wanted to quickly write this proof up, complete with pictures, so that I won't forget it again. In this post I'll give a combinatorial proof (due to Joyal) of the following: Theorem 1 (Cayley's Formula) The number of trees on $latex {n}&fg=000000$ labelled vertices is $latex {n^{n-2}}&fg=000000$. Proof: We are going to construct a… Continue reading Joyal’s Proof of Cayley’s Tree Formula

Combinatorial Nullstellensatz and List Coloring

More than six months late, but here are notes from the combinatorial nullsetllensatz talk I gave at the student colloquium at MIT. This was also my term paper for 18.434, ``Seminar in Theoretical Computer Science''. 1. Introducing the choice number One of the most fundamental problems in graph theory is that of a graph coloring,… Continue reading Combinatorial Nullstellensatz and List Coloring

Formal vs Functional Series (OR: Generating Function Voodoo Magic)

Epistemic status: highly dubious. I found almost no literature doing anything quite like what follows, which unsettles me because it makes it likely that I'm overcomplicating things significantly. 1. Synopsis Recently I was working on an elegant problem which was the original problem 6 for the 2015 International Math Olympiad, which reads as follows: Problem… Continue reading Formal vs Functional Series (OR: Generating Function Voodoo Magic)

Approximating E3-LIN is NP-Hard

This lecture, which I gave for my 18.434 seminar, focuses on the MAX-E3LIN problem. We prove that approximating it is NP-hard by a reduction from LABEL-COVER. 1. Introducing MAX-E3LIN In the MAX-E3LIN problem, our input is a series of linear equations $latex {\pmod 2}&fg=000000$ in $latex {n}&fg=000000$ binary variables, each with three terms. Equivalently, one… Continue reading Approximating E3-LIN is NP-Hard