On Problem Sets

(It appears to be May 7 -- good luck to all the national MathCounts competitors tomorrow!) 1. An 8.044 Problem Recently I saw a 8.044 physics problem set which contained the problem Consider a system of $latex {N}&fg=000000$ almost independent harmonic oscillators whose energy in a microcanonical ensemble is given by $latex {E = \frac… Continue reading On Problem Sets

Cauchy’s Functional Equation and Zorn’s Lemma

This is a draft of an appendix chapter for my Napkin project. In the world of olympiad math, there's a famous functional equation that goes as follows: $latex \displaystyle f : {\mathbb R} \rightarrow {\mathbb R} \qquad f(x+y) = f(x) + f(y). &fg=000000$ Everyone knows what its solutions are! There's an obvious family of solutions… Continue reading Cauchy’s Functional Equation and Zorn’s Lemma

Teaching A* USAMO Camp

In the last week of December I got a position as the morning instructor for the A* USAMO winter camp. Having long lost interest in coaching for short-answer contests, I'd been looking forward to an opportunity to teach an olympiad class for ages, and so I was absolutely psyched for that week. In this post… Continue reading Teaching A* USAMO Camp

Representation Theory, Part 4: The Finite Regular Representation

Good luck to everyone taking the January TST for the IMO 2015 tomorrow! Now that we have products of irreducibles under our belt, I'll talk about the finite regular representation and use it to derive the following two results about irreducibles. The number of (isomorphsim classes) of irreducibles $latex {\rho_\alpha}&fg=000000$ is equal to the number… Continue reading Representation Theory, Part 4: The Finite Regular Representation

Represenation Theory, Part 3: Products of Representations

Happy New Year to all! A quick reminder that $latex {2015 = 5 \cdot 13 \cdot 31}&fg=000000$. This post will set the stage by examining products of two representations. In particular, I'll characterize all the irreducibles of $latex {G_1 \times G_2}&fg=000000$ in terms of those for $latex {G_1}&fg=000000$ and $latex {G_2}&fg=000000$. This will set the… Continue reading Represenation Theory, Part 3: Products of Representations

Representation Theory, Part 2: Schur’s Lemma

Merry Christmas! In the previous post I introduced the idea of an irreducible representation and showed that except in fields of low characteristic, these representations decompose completely. In this post I'll present Schur's Lemma at talk about what Schur and Maschke tell us about homomorphisms of representations. 1. Motivation Fix a group $latex {G}&fg=000000$ now,… Continue reading Representation Theory, Part 2: Schur’s Lemma

Representation Theory, Part 1: Irreducibles and Maschke’s Theorem

Good luck to everyone taking the December TST tomorrow! The goal of this post is to give the reader a taste of representation theory, a la Math 55a. In theory, this post should be accessible to anyone with a knowledge of group actions and abstract vector spaces. Fix a ground field $latex {k}&fg=000000$ (for all… Continue reading Representation Theory, Part 1: Irreducibles and Maschke’s Theorem

Three Properties of Isogonal Conjugates

In this post I'll cover three properties of isogonal conjugates which were only recently made known to me. These properties are generalization of some well-known lemmas, such as the incenter/excenter lemma and the nine-point circle. 1. Definitions Let $latex {ABC}&fg=000000$ be a triangle with incenter $latex {I}&fg=000000$, and let $latex {P}&fg=000000$ be any point in… Continue reading Three Properties of Isogonal Conjugates

Set Theory, Part 2: Constructing the Ordinals

This is a continuation of my earlier set theory post. In this post, I'll describe the next three axioms of ZF and construct the ordinal numbers. 1. The Previous Axioms As review, here are the natural descriptions of the five axioms we covered in the previous post. Axiom 1 (Extensionality) Two sets are equal if… Continue reading Set Theory, Part 2: Constructing the Ordinals