Merry Christmas!
In the previous post I introduced the idea of an irreducible representation and showed that except in fields of low characteristic, these representations decompose completely. In this post I’ll present Schur’s Lemma at talk about what Schur and Maschke tell us about homomorphisms of representations.
1. Motivation
Fix a group now, and consider all isomorphism classes of finite-dimensional representations of
. We’ll denote this set by
. Maschke’s Theorem tells us that any finite-dimensional representation
can be decomposed as
where is some nonnegative integer. This begs the question: what is
? Is it even uniquely determined by
?
To answer this I first need to compute for any two distinct irreducible representations
and
. One case is easy.
Lemma 1 Let
and
be non-isomorphic irreducible representations (not necessarily finite dimensional). Then there are no nontrivial homomorphisms
. In other words,
.
I haven’t actually told you what it means for representations to be isomorphic, but you can guess — it just means that there’s a homomorphism of -representations between them which is also a bijection of the underlying vector spaces.
Proof: Let be a nonzero homomorphism. We can actually prove the following stronger results.
- If
is irreducible then
is surjective.
- If
is irreducible then
is injective.
Exercise Prove the above two results. (Hint: show that
and
give rise to subrepresentations.)
Combining these two results gives the lemma because is now a bijection, and hence an isomorphism.
2. Schur’s Lemma
Thus we only have to consider the case . The result which relates these is called Schur’s Lemma, but is important enough that we refer to it as a theorem.
Theorem 2 (Schur’s Lemma) Assume
is algebraically closed. Let
be a finite dimensional irreducible representation. Then
consists precisely of maps of the form
, where
; the only possible maps are multiplication by a scalar. In other words,
and
.
This is NOT in general true without the algebraically closed condition, as the following example shows.
Example Let
, let
, and let
act on
by rotating every
by
around the origin, giving a representation
. Then
is a counterexample to Schur’s Lemma.
Proof: This representation is clearly irreducible because the only point that it fixes is the origin, so there are no nontrivial subrepresentations.
We can regard now as a map in
which is multiplication by
. Then for any other complex number
, the map “multiplication by
” commutes with the map “multiplication by
”. So in fact
which has dimension .
Now we can give the proof of Schur’s Lemma.
Proof: Clearly any map respects the
-action.
Now consider any . Set
. Here’s the key: because
is algebraically closed, and we’re over a finite dimensional vector space
, the map
has an eigenvalue
. Hence by definition
has a subspace
over which
is just multiplication by
.
But then is a
-invariant subspace of
! Since
is irreducible, this can only happen if
. That means
is multiplication by
for the entire space
, as desired.
3. Computing dimensions of homomorphisms
Since we can now compute the dimension of the of any two irreducible representations, we can compute the dimension of the
for any composition of irreducibles, as follows.
Corollary 3 We have
where the direct sums run over the isomorphism classes of irreducibles.
Proof: The just decomposes over each of the components as
Here we’re using the fact that (obvious) and its analog. The claim follows from our lemmas now.
As a special case of this, we can quickly derive the following.
Corollary 4 Suppose
as above. Then for any particular
,
Proof: We have
as desired.
This settles the “unique decomposition” in the affirmative. Hurrah!
It might be worth noting that we didn’t actually need Schur’s Lemma if we were solely interested in uniqueness, since without it we would have obtained
However, the denominator in that expression is rather unsatisfying, don’t you think?
4. Conclusion
In summary, we have shown the following main results for finite dimensional representations of a group .
- Maschke’s Theorem: If
is finite and
does not divide
, then any finite dimensional representation is a direct sum of irreducibles. This decomposition is unique up to isomorphism.
- Schur’s Lemma: If
is algebraically closed, then
for any irreducible
, while there are no nontrivial homomorphisms between non-isomorphic irreducibles.
In the next post I’ll talk about products of irreducibles, and use them in the fourth post to prove two very elegant results about the irreducibles, as follows.
- The number of (isomorphsim classes) of irreducibles
is equal to the number of conjugacy classes of
.
- We have
.
Thanks to Dennis Gaitsgory, who taught me this in his course Math 55a. My notes for Math 55a can be found at my website.