Good luck to everyone taking the December TST tomorrow!

The goal of this post is to give the reader a taste of representation theory, a la Math 55a. In theory, this post should be accessible to anyone with a knowledge of group actions and abstract vector spaces.

Fix a ground field (for all vector spaces). In this post I will introduce the concept of representations and irreducible representations. Using these basic definitions I will establish Maschke’s Theorem, which tells us that irreducibles and indecomposables are the same thing.

**1. Definition and Examples **

Let be a group.

DefinitionArepresentationof consists of a pair where is a vector space over and is a (left) group action of on which is linear in . If is finite-dimensional then thedimensionof is just the dimension of .

Explicitly the conditions on are that

Note that another equivalent phrasing is that is a homomorphism from to the general linear group ; however, we will not use this phrasing.

By abuse of notation, we occasionally refer to by just its underlying vector space in the case that is clear from context. We may also abbreviate as just .

A simple example of a nontrivial representation is the following.

ExampleIf and , then an example of an action is is simply

meaning we permute the basis elements of . We denote this representation by .

Let us give another useful example.

DefinitionLet be a set acted on by . We define the vector space

with the standard addition of functions.

ExampleWe define a representation on by the following action: every gets sent to a by

By abuse of notation we will let refer both to the vector space and the corresponding representation.

Now that we have two nontrivial examples, we also give a trivial example.

DefinitionLet be a group. We define thetrivial representation, or just , as the representation , where

for every . In other words, acts trivially on .

**2. Homomorphisms of Representations **

First, as a good budding algebraist (not really) I should define how these representations talk to each other.

DefinitionLet and be representations of the same group . Ahomomorphism of -representationsis a linear map which respects the -action: for any and ,

The set of all these homomorphisms is written , which is itself a vector space over .

(Digression: For those of you that know category theory, you might realize by now that representations correspond to functors from a category (corresponding to the group ) into and that homomorphisms of representations are just natural transformations.)

To see an example of this definition in action, we give the following as an exercise.

Proposition 1Let . We define the-invariantspace to be

Then there is a natural bijection of vector spaces .

*Proof:* Let . The set consists of maps with

for every . Since is linear, it is uniquely defined by (since in general). So , i.e. , is necessary and sufficient. Thus the bijection is just .

This proposition will come up again at the end of Part 4.

**3. Subrepresentations, Irreducibles, and Maschke’s Theorem **

Now suppose I’ve got a representation .

DefinitionSuppose we have a subspace which is -invariant, meaning that for every and . Then we can construct a representation of on by restricting the action to :

In that case the resulting is called a

subrepresentationof .

Every has an obvious subrepresentation, namely itself, as well as a stupid subrepresenation on the zero-dimensional vector space . But it’s the case that some representations have *interesting* subrepresentations.

ExampleConsider the representation of on defined in the first section. For all , is not irreducible.

*Proof:* Consider the subspace given by

then is invariant under , so we have a subrepresentation of , which we’ll denote .

This motivates the ideas of irreducibles.

DefinitionA representation isirreducibleif it has no nontrivial subrepresentations.

Of course the first thing we ask is whether any representation decomposes as a product of irreducible representations. But what does it mean to compose two representations, anyways? It’s just the “natural” definition with the direct sum.

DefinitionLet and be representations and suppose we have . Then we define the representation by where

Just like every integer decomposes into prime factors, we hope that every representation decomposes into irreducibles. But this is too much to hope for.

ExampleLet , let be the finite field of order (aka ), and consider , which is not irreducible. However, we claim that we cannot write foranynontrivial and .

*Proof:* This is a good concrete exercise.

Assume not, and let and be the underlying vector spaces of and . By nontriviality, , and in particular we have that as sets, . Take the only nonzero elements and . Since is invariant under , , so . Similarly, , which is impossible.

So we hoped for perhaps too much. However, with seemingly trivial modifications we can make the above example work.

ExampleIn the same example as above, suppose we replace with any field which does not have characteristic . Then does decompose.

*Proof:* Consider the following two subspaces of :

It’s easy to see that both and are both invariant under . Moreover, if then we in fact have

because for any . So if we let be the subrepresentation corresponding to , and define on similarly, then we have .

Thus the only thing in the way of the counterexample was the fact that . And it turns out in general this is the only obstacle, a result called Maschke’s Theorem.

Theorem 2 (Maschke’s Theorem)Suppose that is a finite group, and does not divide . Then every finite-dimensional representation decomposes as a direct sum of irreducibles.

Before proceeding to the proof, I’ll draw an analogy between the proof that every positive integer decomposes as the product of primes. We use by strong induction on ; if is prime we are done, and if is composite there is a nontrivial divisor , so we apply the inductive hypothesis to and and combine these factorizations. We want to mimic the proof above in our proof of Maschke’s Theorem, but we have a new obstacle: we have to show that somehow, we can “divide”.

So why is it that we can divide in certain situations? The idea is that we want to be able to look at an “average” of the form

because this average has the nice property of being -invariant. We’ll use this to obtain our proof of Maschke’s Theorem.

*Proof:* We proceed by induction on the dimension of the representation . Let be a representation and assume its not irreducible, so it has a nontrivial subspace which is -invariant. It suffices to prove that there exists a subspace such that is also -invariant and , because then we can apply the inductive hypothesis to the subrepresentations induced by and .

Let be any projection of onto . We consider the *averaging* map by

We’ll use the following properties of the map.

ExerciseShow that the map has the following three properties.

- For any , .
- For any , .
- .

As with any projection map , we must have . But . Moreover, because the map is -invariant, it follows that is -invariant. Hence taking completes the proof.

This completes our proof of Maschke’s Theorem, telling us how all irreducibles decompose. Said another way, Maschke’s Theorem tells us that any finite-dimensional representation can be decomposed as

where is some nonnegative integer, and is the set of all (isomorphism classes of) irreducibles representations.

You may wonder whether the decomposition is unique, and if so what we can say about the “exponents” . In the next post I’ll show how to compute the exponents (which in particular gives uniqueness).

*Thanks to Dennis Gaitsgory, who taught me this in his course Math 55a. Thanks also to the MOPpers at PUMaC 2014 who let me run this by them during a sleepover; several improvements were made to the original draft as a result. My notes for Math 55a can be found at my website. Thanks also to N for pointing out an error in my proof of Maschke’s Theorem.*