The Structure Theorem over PID’s

In this post I'll describe the structure theorem over PID's which generalizes the following results: Finite dimensional vector fields over $latex {k}&fg=000000$ are all of the form $latex {k^{\oplus n}}&fg=000000$, The classification theorem for finitely generated abelian groups, The Frobenius normal form of a matrix, The Jordan decomposition of a matrix. 1. Some ring theory… Continue reading The Structure Theorem over PID’s

Miller-Rabin (for MIT 18.434)

This is a transcript of a talk I gave as part of MIT's 18.434 class, the ``Seminar in Theoretical Computer Science'' as part of MIT's communication requirement. (Insert snarky comment about MIT's CI-* requirements here.) It probably would have made a nice math circle talk for high schoolers but I felt somewhat awkward having to… Continue reading Miller-Rabin (for MIT 18.434)

Things Fourier

For some reason several classes at MIT this year involve Fourier analysis. I was always confused about this as a high schooler, because no one ever gave me the ``orthonormal basis'' explanation, so here goes. As a bonus, I also prove a form of Arrow's Impossibility Theorem using binary Fourier analysis, and then talk about… Continue reading Things Fourier

Artin Reciprocity

I will tell you a story about the Reciprocity Law. After my thesis, I had the idea to define $latex {L}&fg=000000$-series for non-abelian extensions. But for them to agree with the $latex {L}&fg=000000$-series for abelian extensions, a certain isomorphism had to be true. I could show it implied all the standard reciprocity laws. So I… Continue reading Artin Reciprocity

Against Perfect Scores

One of the pieces of advice I constantly give to young students preparing for math contests is that they should probably do harder problems. But perhaps I don't preach this zealously enough for them to listen, so here's a concrete reason (with actual math!) why I give this advice. 1. The AIME and USAMO In… Continue reading Against Perfect Scores

18.099 Transcript: Bourgain’s Theorem

As part of the 18.099 Discrete Analysis reading group at MIT, I presented section 4.7 of Tao-Vu's Additive Combinatorics textbook. Here were the notes I used for the second half of my presentation. 1. Synopsis We aim to prove the following result. Theorem 1 (Bourgain) Assume $latex {N \ge 2}&fg=000000$ is prime and $latex {A,… Continue reading 18.099 Transcript: Bourgain’s Theorem

18.099 Transcript: Chang’s Theorem

As part of the 18.099 discrete analysis reading group at MIT, I presented section 4.7 of Tao-Vu's Additive Combinatorics textbook. Here were the notes I used for the first part of my presentation. 1. Synopsis In the previous few lectures we've worked hard at developing the notion of characters, Bohr sets, spectrums. Today we put… Continue reading 18.099 Transcript: Chang’s Theorem

Mechanism Design and Revenue Equivalence

Happy Pi Day! I have an economics midterm on Wednesday, so here is my attempt at studying. 1. Mechanisms The idea is as follows. We have $latex {N}&fg=000000$ people and a seller who wants to auction off a power drill. The $latex {i}&fg=000000$th person has a private value of at most $latex {\$1000}&fg=000000$ on the… Continue reading Mechanism Design and Revenue Equivalence