Some Thoughts on Olympiad Material Design

(This is a bit of a follow-up to the solution reading post last month. Spoiler warnings: USAMO 2014/6, USAMO 2012/2, TSTST 2016/4, and hints for ELMO 2013/1, IMO 2016/2.) I want to say a little about the process which I use to design my olympiad handouts and classes these days (and thus by extension the… Continue reading Some Thoughts on Olympiad Material Design

On Reading Solutions

(Ed Note: This was earlier posted under the incorrect title "On Designing Olympiad Training". How I managed to mess that up is a long story involving some incompetence with Python scripts, but this is fixed now.) Spoiler warnings: USAMO 2014/1, and hints for Putnam 2014 A4 and B2. You may want to work on these… Continue reading On Reading Solutions

Against the “Research vs. Olympiads” Mantra

There's a Mantra that you often hear in math contest discussions: "math olympiads are very different from math research". (For known instances, see O'Neil, Tao, and more. More neutral stances: Monks, Xu.) It's true. And I wish people would stop saying it. Every time I've heard the Mantra, it set off a little red siren… Continue reading Against the “Research vs. Olympiads” Mantra

Against Perfect Scores

One of the pieces of advice I constantly give to young students preparing for math contests is that they should probably do harder problems. But perhaps I don't preach this zealously enough for them to listen, so here's a concrete reason (with actual math!) why I give this advice. 1. The AIME and USAMO In… Continue reading Against Perfect Scores

Stop Paying Me Per Hour

Occasionally I am approached by parents who ask me if I am available to teach their child in olympiad math. This is flattering enough that I've even said yes a few times, but I'm always confused why the question is "can you tutor my child?" instead of "do you think tutoring would help, and if… Continue reading Stop Paying Me Per Hour

Some Advice for Olympiad Geometry

I know some friends who are fantastic at synthetic geometry. I can give them any problem and they'll come up with an incredibly impressive synthetic solution. I also have some friends who are very bad at synthetic geometry, but have such good fortitude at computations that they can get away with using Cartesian coordinates for… Continue reading Some Advice for Olympiad Geometry

Rant: Matrices Are Not Arrays of Numbers

The following is an excerpt from a current work of mine. I thought I'd share it here, as some people have told me they enjoyed it. As I'll stress repeatedly, a matrix represents a linear map between two vector spaces. Writing it in the form of an $latex {m \times n}&fg=000000$ matrix is merely a… Continue reading Rant: Matrices Are Not Arrays of Numbers

On Problem Sets

(It appears to be May 7 -- good luck to all the national MathCounts competitors tomorrow!) 1. An 8.044 Problem Recently I saw a 8.044 physics problem set which contained the problem Consider a system of $latex {N}&fg=000000$ almost independent harmonic oscillators whose energy in a microcanonical ensemble is given by $latex {E = \frac… Continue reading On Problem Sets

Teaching A* USAMO Camp

In the last week of December I got a position as the morning instructor for the A* USAMO winter camp. Having long lost interest in coaching for short-answer contests, I'd been looking forward to an opportunity to teach an olympiad class for ages, and so I was absolutely psyched for that week. In this post… Continue reading Teaching A* USAMO Camp

What leads to success at math contests?

Updated version of generic advice post: Platitudes v3. I think this is an important question to answer, not the least of reasons being that understanding how to learn is extremely useful both for teaching and learning. [1] About a year ago [2], I posted my thoughts on what the most important things were in math… Continue reading What leads to success at math contests?