Hard and soft techniques

In yet another contest-based post, I want to distinguish between two types of thinking: things that could help you solve a problem, and things that could help you understand the problem better. Then I'll talk a little about how you can use the latter. (I've talked about this in my own classes for a while… Continue reading Hard and soft techniques

Undergraduate Math 011: a firsT yeaR coursE in geometrY

tl;dr I parodied my own book, download the new version here. People often complain to me about how olympiad geometry is just about knowing a bunch of configurations or theorems. But it recently occurred to me that when you actually get down to its core, the amount of specific knowledge that you need to do… Continue reading Undergraduate Math 011: a firsT yeaR coursE in geometrY

RMM 2019 pictures and aftermath

Pictures, thoughts, and other festives from the 2019 Romania Masters in Math. See also the MAA press release. Summary Po-Shen Loh and I spent the last week in Bucharest with the United States team for the 11th RMM. The USA usually sends four students who have not attended a previous IMO or RMM before. This… Continue reading RMM 2019 pictures and aftermath

Math contest platitudes, v3

I think it would be nice if every few years I updated my generic answer to "how do I get better at math contests?". So here is the 2019 version. Unlike previous instances, I'm going to be a little less olympiad-focused than I usually am, since these days I get a lot of people asking… Continue reading Math contest platitudes, v3

A few shockingly linear graphs

There's a recent working paper by economists Ruchir Agarwal and Patrick Gaule which I think would be of much interest to this readership: a systematic study of IMO performance versus success as a mathematician later on. Here is a link to the working paper. Despite the click-baity title and dreamy introduction about the Millenium Prizes, the… Continue reading A few shockingly linear graphs

New oly handout: Constructing Diagrams

I've added a new Euclidean geometry handout, Constructing Diagrams, to my webpage. Some of the stuff covered in this handout: Advice for constructing the triangle centers (hint: circumcenter goes first) An example of how to rearrange the conditions of a problem and draw a diagram out-of-order Some mechanical suggestions such as dealing with phantom points… Continue reading New oly handout: Constructing Diagrams

Make training non zero-sum

Some thoughts about some modern trends in mathematical olympiads that may be concerning. I. The story of the barycentric coordinates I worry about my geometry book. To explain why, let me tell you a story. When I was in high school about six years ago, barycentric coordinates were nearly unknown as an olympiad technique. I… Continue reading Make training non zero-sum

Revisiting arc midpoints in complex numbers

1. Synopsis One of the major headaches of using complex numbers in olympiad geometry problems is dealing with square roots. In particular, it is nontrivial to express the incenter of a triangle inscribed in the unit circle in terms of its vertices. The following lemma is the standard way to set up the arc midpoints… Continue reading Revisiting arc midpoints in complex numbers

Lessons from math olympiads

In a previous post I tried to make the point that math olympiads should not be judged by their relevance to research mathematics. In doing so I failed to actually explain why I think math olympiads are a valuable experience for high schoolers, so I want to make amends here. 1. Summary In high school… Continue reading Lessons from math olympiads